I he webinar will begin shortly

90,0,0,0,

B SDS

Quality Mainframe Software since 1982

S — L

info@sdsusa.com | (800) 443-6183 | www.sdsusa.com S

Bﬂ SDS Webinar +2"SSH.COM

299004,

Exploring the
Technology and Details

of Securing FTP on
z/OS and Beyond

B SDS MAINFRAME SECURITYRSECURE FTP for z/OS

Bﬂ SDS About Us sdsusa.com

299004,

Quality Mainframe Software since 1982

P Expert development & technical support teams based in Minneapolis, MN.
» 25+ products for z/OS, z/VM, z/VSE, and distributed platforms.

P Hundreds of organizations worldwide rely on SDS solutions.

P Focus on mainframe security and compliance.

P Cost savings and legacy tool replacements: DO MORE WITH LESS!

P Long-standing global partnerships complement SDS software.

P Recognized as cybersecurity trend-setter.

CYBERSECURITY

200

WORLD'S HOTTEST SECURITY COMPANIES

B SDS MAINFRAME SECURITYRSECURE FTP for z/OS

About SSH.com

Brief Company Introduction

B SDS Presenters +2"SSH.COM

90,0,0,0,

Jan Hlinovsky Colin van der Ross

Product Manager, Tectia SSH Server for z/OS Sr. Systems Engineer

+24"'SSH.COM BdSDS

|
wodt MR < 4 |

A Data Set’s Journey Demonstration of
from z/OS to Unix the z/OS SFTP topics
and Back Again covered by Jan

B SDS MAINFRAME SECURITYRSECURE FTP for z/OS

Tectia SSH Server for IBM z/OS

A Data Set’s Journey from
z/OS to Unix and Back
Again

Jan Hlinovsky, Product Manager for Tectia on
4
jan.hlinovsky@ssh.com

Storing text format data on a computer

« Computers operate with bits that are commonly collected into bytes. One byte, 8
bits, sometimes expressed as two hexadecimal values, can express 2°8=256
different values.

 In the 60s the ASCII code standardization and mainframe development were
happening in parallel. ASCII code was 7 bit and its development stems from
telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,
and it was used in IBM system/360.

~2SSH.COM

Storing text format data on a computer

« Computers operate with bits that are commonly collected into bytes. One byte, 8
bits, sometimes expressed as two hexadecimal values, can express 2°8=256
different values.

 In the 60s the ASCII code standardization and mainframe development were
happening in parallel. ASCII code was 7 bit and its development stems from
telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,
and it was used in IBM system/360.

Binary: 0100 1110 0101 1010

Hex: 4 E 5 A
ASCII: N Z
EBCDIC: + !

~2SSH.COM

Storing text format data on a computer

« Computers operate with bits that are commonly collected into bytes. One byte, 8
bits, sometimes expressed as two hexadecimal values, can express 2°8=256
different values.

 In the 60s the ASCII code standardization and mainframe development were
happening in parallel. ASCII code was 7 bit and its development stems from
telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,
and it was used in IBM system/360.

Binary: 0100 1110 0101 1010 Binary: 1101 0101 1110 1001
Hex: 4 E 5 A Hex: D 5 E 9
ASCII: N Z ASCII: (invalid) (invalid)
EBCDIC: + ! EBCDIC: N Z

~2SSH.COM

Common subsets and extensions

» There are several EBCDIC code pages, most common being 1047. There are also several
8 bit international character sets that have the ASCII code as a subset of the character set,
sometimes called extended ASCII. For instance, ISO Latin 1, ISO8859-1.

« But the 256 possible values in one byte can only cover so much. Many languages have
character sets that are much bigger -> need more bytes.

» These days, the Unicode standard covers most of the characters and symbols used in the
world. There are several encoding methods, of which the UTF-8 is the most popular one.

UTF8 is a variable length code (1-4 bytes per character) that also contains ASCII as a
subset of the shortest (1 byte) characters.

 -> |f you know what enconding your text uses, you can convert it to another encoding (that
has the same characters), for instance with iconv

Note: On z/OS, iconv works best with single byte code pages, e.g. to/from EBCDIC

~2SSH.COM

What character set IS In use?

* Typically, the character set in use is defined in the runtime environment, for instance in a
Unix system in the locale and LC_* environment variables.

« Usually a system has a default character set defined, but users can decide to use a
different one (and even change it at will).

* In other words, the character set in use in a text file is what was used when the file was
saved.

 As a result, we can have an educated guess about the content type of a text file or data
set, but we can not know it with 100% certainty. Therefore, when using the file later e.g. in
file transfer, we want to give the user the ability to say how the content should be decoded.

* On z/0OS, HFS files can have tags that help the operating system display text files
correctly.

~2SSH.COM

Newline conventions

« In addition to character sets, there is a higher level concept of "newline”. Different
systems use different encoding for this.

—z/OS data sets: record based, no concept of newline

—z/OS HFS files: EBCDIC newline character (NL, 0x25)

—Unix: ASCII linefeed character (\n, Ox0a)

—Windows: ASCII carriage return and linefeed combination (\r\n, 0x0d 0x0a)

S cat testfile
linel
line2

S hexdump —C testfile
00000000 6¢ 69 6e 65 31 0a 6Cc 69 6€ 65 32 0a |linel.line2.|
0000000c

S

~2SSH.COM

What do file transfer programs do when transferring
text files between different systems?

« Simple way: binary mode and "ascii" mode

— binary mode: just transfer the data as is, and let the recipient handle any conversions if
needed

— ascii mode: perform the default conversion for newlines (and in some cases character
sets)

* Works in most cases, but sometimes we need more control

« Example with Tectia: site parameters
— | (TRANSFER_LINE_DELIMITER) - what delimiter is sent on the line
— J (TRANSFER_FILE_LINE_DELIMITER) - what delimiter is used on the mainframe side
— C (TRANSFER_CODESET) - what codeset is sent on the line

— D (TRANSFER_FILE_CODESET) - what codeset is used on the mainframe side
* The character sets supported with C and D are what iconv on the z/OS supports

~2SSH.COM

Connecting with sftp and scp clients

* The scp client is a one line command to copy a file between two computers

» The sftp client tries to provide an FTP like user interface (even though the protocol
IS very different)

 Tectia command line tools include scpg3 (an scp client) and sftpg3 (sftp client)
— support for direct dataset access
— cryptography (cipher and HMAC) can be offloaded to CPACF or CEX

— can be used to connect to any SSH server (for instance OpenSSH), translation is
always performed on the mainframe side

— can be used interactively or in JCL

~2SSH.COM

z/OS to Unix

« For example, when using sftpg3 client to send a dataset from z/OS to a Unix machine:

sftp> Isite I=UNIX J=MVS
sftp> Isite C=ISO8859-1 D=IBM-1047

sftp> sput //DATASET file.txt

« What happens is that

— On the z/OS side, the //IDATASET is opened for reading, and there is an EBCDIC newline
added (NL, 0x25) between the records in the buffer

— The newline is converted into Unix style newline (Ox0a)

— The data in the records is converted from EBCDIC (IBM-1047) into ASCII/ISO-Latinl

— On the Unix side, file.txt (in the current directory) is opened for writing

— The data sent on the line and written to the file.txt is ISO8859-1 with Unix style newlines

~2SSH.COM

Unix to z/OS

« Example: OpenSSH client on Linux sends a text file to an MVS dataset on z/OS
that has Tectia Server

sftp> put file.txt /ftadv:l=unix,J=mvs,C=is0o8859-1,D=ibm-1047/ DATASET

« The remote file string contains some additional information (file transfer advice
string) that the server side processes

» The advice string tells the server that the incoming data has Unix style newlines
and ISO-Latinl character set in use, and conversion Is requested.

* The destination is a dataset, DATASET is an alternative format for //DATASET

* The newlines are converted to NL in the process, and finally the line format data is
converted to record oriented format automatically because the destination is a
data set. If the destination would be a file in the HFS filesystem, the newlines
would be left as EBCDIC newline characters.

~2SSH.COM

Special cases

* With z/OS to z/OS file transfers, sometimes we want to emulate FTP’s RDW
feature

— need to use "F=record,J=MVS-FTP,X=bin”

« ASA printer control characters
— need to use RECFM=FBA

* When the regular tables just won't do (i.e. if iconv does not have a translation)
— option to use custom translation tables with TRANSFER_TRANSLATE_TABLE

~2SSH.COM

Summary

 MVS datasets are record oriented, others (HFS, Unix, Windows) are stream
oriented where newline in text is denoted by a special character or a combination
of characters

« Character set conversion and newline conversion are two different things

« Character set conversion and newline conversion can change the size of a text
file

« Easy mode: binary vs ascii
« Customizable options for newline conversion and character set conversion

~2SSH.COM

B SDS

Colin van der Ross

Sr. Systems Engineer

B4 SDS

Deonstration of the
z/OS FTP topics
covered by Jan

299004,

o5 SSH.COM

Agenda
» Commonly Used Advise Strings

» Additional file transfer information

» Demo of z/OS SF

action

P with SSH in

B SDS MAINFRAME SECURITYRSECURE FTP for z/OS

Bﬂ SDS ave a Question? 2 SSH.COM

29,0,9,0,

Would you like additional information!?
Q) =
2N

m
info@sdsusa.com

(800) 443-6183

(763) 571-9000 www.sdsusa.com

B SDS MAINFRAME SECURITY®SECURE FTP for z/OS

