
info@sdsusa.com | (800) 443-6183 | www.sdsusa.com

The webinar will begin shortly

MAINFRAME SECURITY SECURE FTP for z/OS

Webinar

Exploring the
Technology and Details

of Securing FTP on
z/OS and Beyond

MAINFRAME SECURITY SECURE FTP for z/OS

►Expert development & technical support teams based in Minneapolis, MN.

►25+ products for z/OS, z/VM, z/VSE, and distributed platforms.

►Hundreds of organizations worldwide rely on SDS solutions.

►Focus on mainframe security and compliance.

►Cost savings and legacy tool replacements: DO MORE WITH LESS!

►Long-standing global partnerships complement SDS software.

►Recognized as cybersecurity trend-setter.

Quality Mainframe Software since 1982

About Us sdsusa.com

About SSH.com
Brief Company Introduction

MAINFRAME SECURITY SECURE FTP for z/OS

Demonstration of
the z/OS SFTP topics

covered by Jan

Colin van der Ross
Sr. Systems Engineer

A Data Set’s Journey
from z/OS to Unix

and Back Again

Jan Hlinovsky
Product Manager, Tectia SSH Server for z/OS

Presenters

Tectia SSH Server for IBM z/OS

A Data Set’s Journey from
z/OS to Unix and Back

Again

Jan Hlinovsky, Product Manager for Tectia on
z
jan.hlinovsky@ssh.com

• Computers operate with bits that are commonly collected into bytes. One byte, 8

bits, sometimes expressed as two hexadecimal values, can express 2^8=256

different values.

• In the 60s the ASCII code standardization and mainframe development were

happening in parallel. ASCII code was 7 bit and its development stems from

telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,

and it was used in IBM system/360.

Storing text format data on a computer

• Computers operate with bits that are commonly collected into bytes. One byte, 8

bits, sometimes expressed as two hexadecimal values, can express 2^8=256

different values.

• In the 60s the ASCII code standardization and mainframe development were

happening in parallel. ASCII code was 7 bit and its development stems from

telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,

and it was used in IBM system/360.

Storing text format data on a computer

Binary: 0100 1110 0101 1010

Hex: 4 E 5 A

ASCII: N Z

EBCDIC: + !

• Computers operate with bits that are commonly collected into bytes. One byte, 8

bits, sometimes expressed as two hexadecimal values, can express 2^8=256

different values.

• In the 60s the ASCII code standardization and mainframe development were

happening in parallel. ASCII code was 7 bit and its development stems from

telegraph code. EBCDIC was 8 bit and is related to coding used with punch cards,

and it was used in IBM system/360.

Storing text format data on a computer

Binary: 1101 0101 1110 1001

Hex: D 5 E 9

ASCII: (invalid) (invalid)

EBCDIC: N Z

Binary: 0100 1110 0101 1010

Hex: 4 E 5 A

ASCII: N Z

EBCDIC: + !

• There are several EBCDIC code pages, most common being 1047. There are also several

8 bit international character sets that have the ASCII code as a subset of the character set,

sometimes called extended ASCII. For instance, ISO Latin 1, ISO8859-1.

• But the 256 possible values in one byte can only cover so much. Many languages have

character sets that are much bigger -> need more bytes.

• These days, the Unicode standard covers most of the characters and symbols used in the

world. There are several encoding methods, of which the UTF-8 is the most popular one.

UTF8 is a variable length code (1-4 bytes per character) that also contains ASCII as a

subset of the shortest (1 byte) characters.

• -> If you know what enconding your text uses, you can convert it to another encoding (that

has the same characters), for instance with iconv

Note: On z/OS, iconv works best with single byte code pages, e.g. to/from EBCDIC

Common subsets and extensions

• Typically, the character set in use is defined in the runtime environment, for instance in a
Unix system in the locale and LC_* environment variables.

• Usually a system has a default character set defined, but users can decide to use a
different one (and even change it at will).

• In other words, the character set in use in a text file is what was used when the file was
saved.

• As a result, we can have an educated guess about the content type of a text file or data
set, but we can not know it with 100% certainty. Therefore, when using the file later e.g. in
file transfer, we want to give the user the ability to say how the content should be decoded.

• On z/OS, HFS files can have tags that help the operating system display text files
correctly.

What character set is in use?

• In addition to character sets, there is a higher level concept of ”newline”. Different

systems use different encoding for this.

–z/OS data sets: record based, no concept of newline

–z/OS HFS files: EBCDIC newline character (NL, 0x25)

–Unix: ASCII linefeed character (\n, 0x0a)

–Windows: ASCII carriage return and linefeed combination (\r\n, 0x0d 0x0a)

Newline conventions

$ cat testfile
line1
line2
$ hexdump –C testfile
00000000 6c 69 6e 65 31 0a 6c 69 6e 65 32 0a |line1.line2.|
0000000c
$

• Simple way: binary mode and "ascii" mode

– binary mode: just transfer the data as is, and let the recipient handle any conversions if
needed

– ascii mode: perform the default conversion for newlines (and in some cases character
sets)

• Works in most cases, but sometimes we need more control

• Example with Tectia: site parameters

– I (TRANSFER_LINE_DELIMITER) - what delimiter is sent on the line

– J (TRANSFER_FILE_LINE_DELIMITER) - what delimiter is used on the mainframe side

– C (TRANSFER_CODESET) - what codeset is sent on the line

– D (TRANSFER_FILE_CODESET) - what codeset is used on the mainframe side

•The character sets supported with C and D are what iconv on the z/OS supports

What do file transfer programs do when transferring

text files between different systems?

• The scp client is a one line command to copy a file between two computers

• The sftp client tries to provide an FTP like user interface (even though the protocol

is very different)

• Tectia command line tools include scpg3 (an scp client) and sftpg3 (sftp client)

– support for direct dataset access

– cryptography (cipher and HMAC) can be offloaded to CPACF or CEX

– can be used to connect to any SSH server (for instance OpenSSH), translation is

always performed on the mainframe side

– can be used interactively or in JCL

Connecting with sftp and scp clients

• For example, when using sftpg3 client to send a dataset from z/OS to a Unix machine:

• What happens is that

– On the z/OS side, the //DATASET is opened for reading, and there is an EBCDIC newline

added (NL, 0x25) between the records in the buffer

– The newline is converted into Unix style newline (0x0a)

– The data in the records is converted from EBCDIC (IBM-1047) into ASCII/ISO-Latin1

– On the Unix side, file.txt (in the current directory) is opened for writing

– The data sent on the line and written to the file.txt is ISO8859-1 with Unix style newlines

z/OS to Unix

sftp> lsite I=UNIX J=MVS
sftp> lsite C=ISO8859-1 D=IBM-1047
sftp> sput //DATASET file.txt

• Example: OpenSSH client on Linux sends a text file to an MVS dataset on z/OS
that has Tectia Server

• The remote file string contains some additional information (file transfer advice
string) that the server side processes

• The advice string tells the server that the incoming data has Unix style newlines
and ISO-Latin1 character set in use, and conversion is requested.

• The destination is a dataset, __DATASET is an alternative format for //DATASET

• The newlines are converted to NL in the process, and finally the line format data is
converted to record oriented format automatically because the destination is a
data set. If the destination would be a file in the HFS filesystem, the newlines
would be left as EBCDIC newline characters.

Unix to z/OS

sftp> put file.txt /ftadv:I=unix,J=mvs,C=iso8859-1,D=ibm-1047/__DATASET

• With z/OS to z/OS file transfers, sometimes we want to emulate FTP’s RDW

feature

– need to use ”F=record,J=MVS-FTP,X=bin”

• ASA printer control characters

– need to use RECFM=FBA

• When the regular tables just won’t do (i.e. if iconv does not have a translation)

– option to use custom translation tables with TRANSFER_TRANSLATE_TABLE

Special cases

• MVS datasets are record oriented, others (HFS, Unix, Windows) are stream

oriented where newline in text is denoted by a special character or a combination

of characters

• Character set conversion and newline conversion are two different things

• Character set conversion and newline conversion can change the size of a text

file

• Easy mode: binary vs ascii

• Customizable options for newline conversion and character set conversion

Summary

MAINFRAME SECURITY SECURE FTP for z/OS

Demonstration of the
z/OS FTP topics
covered by Jan

Colin van der Ross
Sr. Systems Engineer

Agenda
►Commonly Used Advise Strings

►Additional file transfer information

►Demo of z/OS SFTP with SSH in
action

(800) 443-6183
(763) 571-9000

info@sdsusa.com www.sdsusa.com

Would you like additional information?

Have a Question?

MAINFRAME SECURITY SECURE FTP for z/OS

